EE 151 Project: RISC-V CPU

Allen Zeng, Stephanie DeRosa - Team 01

1 Project Functional Description and Design Requirements

The goal of the project is to implement a 3-stage RISC-V processor and peripheral circuits on the
Xilinx Virtex-5 LXT ML505 FPGA. The target processor runs at above 50MHz. It is able to run
a BIOS, load and execute programs, interact with user 10, output audio, and output video.

The implementation described here met those goals. Additionally, this implementation makes
optimizations to the processor’s clock speed and resources used on the FPGA.

2 High-level organization

Instruction Instruction Execute Memory Access
Fetch Decode & Writeback
Pipeline Location Pmehmiocaﬂcn Pme\miacahun
Control Signals Control Signals Control Signals
BIOS Mem, Logit:
NextPC {—»{ Instruction Register Write-
g
Instruction ~
Control Unit
Instruction > ALU Input R oAUS
Mem, Read Regi: Fil i
g R b{ legister File | (" Source Logic Comparator

Data-To-
Memory Logic

Data-From-
Memory Logic

Forwarding
Logic & Data

i
Branch & Jump
Logie

Centrol Signals, Register Write
Delayed Data

A classic RISC pipeline can be modeled into 5 stages: Instruction (F)etch, Instruction (D)ecode,
(E)xecute, (M)emory Access, (W)riteback.

There are three main parts to the CPU’s memory hierarchy: the BIOS memory (BMEM), the
Instruction memory (IMEM), and the Data memory (DMEM). Initially, the processor fetches in-
structions from the BMEM and executes a BIOS program. The BIOS is able to interact with user
10, write to IMEM, and write to DMEM. It is therefore able to store programs into the IMEM.
The user is then able to instruct the CPU jump from the BIOS program to fetching and executing
instructions stored in the IMEM. The DMEM can be used by any program to store data.

The BMEM, IMEM, and DMEM are implemented as Block RAMS on the FPGA. The Block RAMs
are both synchronous write and read, so natural pipelining locations arise between the F-D stages
and the E-M stages.

There is a degree of freedom about where to place the third pipelining location. This implementa-
tion places the separation between the D-E stages, parallel to the Register File’s writing and after
the Register File’s reading. (The Register File is synchronous write, asynchronous read.) In the D
and E stages, there is a long critical path through the Control Unit, Register File, and Arithmetic
Logic Unit. So that location splits apart a large critical path. Additionally, this location was chosen
because there is relatively little combinational logic in the M and W stages.

The memory-mapped 10 technique is used to handle user 10. The CPU interfaces with IO modules
such as the on-chip UART, Tone Generator, AC97 Audio Controller, I12C Controller, and DVI
Controller.

3 Detailed Description of Sub-pieces

CPU modules

The RISC-V CPU contains a Register File, Arithmetic Logic Unit (ALU), and Control Unit. There
is no explicit Hazard Unit module, but it’s logic is implemented on the CPU level in the appropriate
sections.

The Register File is fairly standard. All registers are initialized to 0. Register x0 is always set to
0. At each clock cycle, a write is performed if write_enable is true and write_address is not x0.
There are two read ports, which are asynchronous.

The ALU contains a comparator portion and an arithmetic
portion. The ALU takes in two inputs x and y, which
are the operands; and inputs switch and sa (Subtraction
& Arithmetic Shift), which determines the operation per-
formed. The switch corresponds to the funct3 of the
instruction.

The comparator makes signed and unsigned comparisons be-
tween x and y. It uses switch to determine which comparison

Figure 1: ALU

0= 1l=4<S5=6<75=1U

I
[]

S

result to mux to the output. S I
The arithmetic part applies all operations to the operands - ME
independently. It does the standard addition, subtrac- -
tion, bit-shifting, and bit-wise operations. Then it
uses switch and sa to determine which result to mux
to the output. When adding, sa determines whether
the operation is subtraction instead; and when shifting,
sa determines whether the operation is arithmetic shift-
ing.

The Control Unit takes in an instruction and decodes it into
many control signals. Most importantly, it determines the in-
struction type and constructs the appropriate Signed Immediate.

Due to the nature of the ISA, the bits of the immediate are spread into various locations of the
instruction for different instruction types. For optimizing space, the traditional shamt signal for
R-types is combined into being part of the Sign Immediate signals.

The Control Unit also determines the aluSrcA and aluSrcB signals. Those two signals determine
the operands that are sent into the ALU. aluSrcA chooses among read-register 1’s data (forwarded),
read-register 2’s data (forwarded), the corresponding PC, and 0. aluSrcB chooses between read-
register 2’s data (forwarded), and the Signed Immediate/shamt.

The Block RAMs used in the CPU were built using pre-existing Xilinx generators. The BMEM
holds 22 32-bit words, and the IMEM and DMEM hold 2 32-bit words each. They are all syn-
chronous read and write. This project’s implementation does not require word and half accesses to
be word or half aligned. But, accesses that are offset default to the closest lower alignment. For
example, a store or load word at 0x4003, 0x4002, 0x4001 would default to accessing 0x4000. And,
for halfs, 0x4003 would access at 0x4002 and 0x4001 would access at 0x4000. Bytes are aligned.
Notably, the Block RAMs have an input port for write masking which is used in this implementa-
tion; but no read masking is provided, so there is a read mask operation in the CPU as part of load
instructions. (“Data-from-memory logic” on the diagram.) The read masking implements signed
and unsigned loading, and also has alignment behavior as described above.

Memory-mapped 10

AD1981B AC97
Audio Codec
bit ﬁk 1 [: >
It_CIK,
reset_b, —0 —O/O—— —>
sdata_in, GPIO_BUTTONS[4:0] Rotary| Wheel GPIO_DIP[7:0]
sdata_out, CPU RESET - ’ GPIO_LEDI[7:0]
sync Rotary Button Compass LEDS |pjezo SPEAKER
FTTETEEEEEEEEEEEEESE Ay TP T T T T Sy TR B 1
: Button Parser Rotary Parser

AC97 Controller <—l
1
1
| e |
)

cpu_clk_g
I PLL I
USER_CLK

1
1
pixel_clk_g
100 Mhz i: I PLL I

Tone Generator ————

Async FIFO

[eEIE|

1
1

I output_enable

: tone_switch_period
1

1

4

«—SERIAL_TX —> On-Chip UART (—V
SERIAL_RX 1 e <
1

1
1

1

1

1

1

1

1

1

1

12C Controller <«——> RISC-V Core 1

1 1
1 1
1 1
I & Line Engine 1
Arbiter <€—| 1

1

1

1

1

1

(Accelerator)
Chrontel CH7301C

1
1

DVichp @ —
! DVI/Video Controller €—— ramebutter

Block RAM

The audio circuits and some of the 1O circuits were carried over into the project from the lab with
little changes. The 12C Controller was provided by the course staff, but the other circuits were
implemented by the team in accordance to the project specifications.

The CPU interfaces with IO modules such as the on-chip UART, FIFOs, Tone Generator, AC97
Audio Controller, DVI Controller.

There is a serial line between the FPGA and the lab computer, and there are two UARTS one on
either end that are used for communication. The on-chip UART interfaces with the CPU on the
FPGA through a set of ready-valid handshaking signals. Data can be sent and received through
the on-chip UART to the off-chip UART to lab computer. The on-chip UART’s transmitter can
take a byte of data written from the CPU and send it serially to the off-chip. Similarly, the on-
chip UART’s receiver can convert serially received data and present a byte to the CPU. Using the
serial line, the FPGA can communicate with the lab computer. The baud rate is set to 115,200
in this project. The screen $SERIALTTY 115200 is opened on the lab computer to talk to the
FPGA. From there, screen can send ascii characters to the FPGA and can also receive and display
characters. When running the BIOS program, the screen displays an input prompt and can run
commands taken as input. For example, one can jump to another program, like graphics, and
then subsequently setup the on-board Chrontel video-chip. Through the DVI Controller (below),
the graphics program, and user commands on the screen, one can draw pixels to a video output.

The Tone Generator circuit switches an on-board Piezo speaker to produce mono sound. The tone
generator takes an input half-period corresponding to certain audible frequencies. Every half-period
clock cycles, the tone generator inverts its output signal in order to simulate a square wave. The
square wave goes to the Piezo speaker to produce sounds.

As shown in the figure above, a FIFO sits between the CPU and the GPIO buttons. The buttons
include the compass buttons and the rotary wheel. Button presses are parsed into single-cycle
pulses and enter the FIFO. They are held until the CPU has time to process them. This way the
CPU does not have to waste resources constantly watching for physical inputs.

An asynchronous FIFO is connected between the CPU and the AC97 Controller. The AC97 Con-
troller operates on a Bit clock given from the on-board AC97 Audio Codec, separate from the CPU
clock. So, the async FIFO takes in audio data written from the CPU and is read by the AC97
Controller.

Both FIFOS are implemented as a circular queue with a read and a write pointer. The FIFO is
empty when the read pointer catches up with the write pointer, and the FIFO is full when the
write pointer catches up with the read pointer. In order for the async FIFO to work across the two
different clock domains, additional logic is implemented. The write pointer runs on the CPU clock
and needs to be compared to the read pointer to generate the empty signal to the AC97 Controller.
Similarly, the read pointer runs on the Bit clock and needs to be compared to the write pointer to
generate the full signal to the CPU. To exchange these signals across clock domains, the pointers
are converted from binary to gray code, synchronized, and converted back into binary in the other
clock domain.

The AC97 Controller continuously reads audio data, in terms of tone frequencies (audio pitch),
from the asynchronous FIFO and converts it to control signals sent serially to the AC97 Au-
dio Codec. The Audio Codec plays notes through a headphone line. To control the Codec, the
Controller sends 48,000 frames per second with 256 bits per frame. Fach frame is synchronized
using a sync signal and the contents are controlled by a tag at the beginning of the frame. The
frame here is used to control master volume, headphone volume, PCM-out volume, and audio pitch.

The CPU is able to output video data through the DVI Controller and the Chrontel chip. This
implementation uses the VGA protocol for timing, and connects to a 1024 x 768 60Hz refresh rate
monitor through a DVI cable. The VGA frame is 1344 x 806 running on a Pixel clock of 656MHz.
Synchronizing signals are asserted to start each video frame and horizontal line, and a data enable
signal is asserted while the pixel clock is running through the visible region. While in the visible
region, data from the video framebuffer is fetched and sent to the Chrontel chip through the data
bus. Vertical and horizontal counters and combinational logic determine the synchronizing signals
and the data signals. The video framebuffer is implemented as a Block RAM that is written to by
the CPU. As the pixel clock runs through the visible region, data is fetched from the framebuffer
and outputted as a pixel. Because the framebuffer is synchronous read, the data is fetched one cycle
ahead to be in time for the data bus output. The graphics and ac97_visual_piano programs were
able to draw to a monitor once the DVI Controller was implemented.

Table 1: Project PC and Data Addressing

PC Address [31:28] Function Access
4’b0001 Instruction Memory Read
4’b0100 BIOS Memory Read

Data Address [31:28] Function Access
4’b00x1 Data Memory Read/Write
4’b001x Instruction Memory Write If PC[30]
4’b0100 BIOS Memory Read

Data Address Function Access
32h80000000 UART Control Read
32h80000004 UART Receiver Data Read
32h80000008 UART Transmitter Data Write
32h80000010 Cycle Counter Read
32h80000014 Instruction Counter Read
32h80000018 Reset Counters to 0 Write
32h80000020 GPIO FIFO Empty Read
32h80000024 GPIO FIFO Read Data Read
32h80000028 DIP Switches Read
32h80000030 GPIO Compass LEDs Write
32h80000034 Tone Generator Output Enable Write
32h80000038 Tone Generator Tone Switch Period Write
32h80000040 AC97 FIFO Status Read
32h80000044 AC97 FIFO Send Sample Write
32h80000048 AC97 Volume Control Write
32h80000100 12C status Read
32h80000104 12C register read data Read
32h80000108 12C register address Write
32h8000010c¢ 12C register write data Write
32h80000110 12C slave address Write
32h80000114 12C controller trigger Write
32h900xxxxx Video Frame Buffer Write

4 Status and Results

All of the basic functionality described in the project specification are implemented and are working.
The mmult program completes with the correct checksum. The software-based music_streamer is
able to parse the FPGA’s button and rotary inputs, transition between states, and play music.
The graphics program draws black-and-white pixels and lines to a 1024 x 728 VGA output. The
AC97 Visual Piano program, ac97_piano_visual, integrates all parts of the project. It takes in
keyboard inputs through the FPGA UART and converts them into notes. Audio notes are sent to
the AC97 headphone output, and a visual representation of the note is sent to the VGA output.

Optimization Results

Originally, one of the worst critical paths occurred where the data that was coming out of the
Memory stage (including 10 data). The data went through a long chain of MUXes, the ternary
operator 7. Fortunately, that chain of MUXes was shortened into a more tree-like structure and
the CPU frequency was pushed up to 80MHz. The new critical path was elsewhere in the CPU.
The optimization seemed to work because the mmult program ran with the correct checksum. But
actually, an 10 bug was also introduced which caused unexpected behavior when running non-
CPU-only programs. After fixing the new bug, the clock speed was lowered back to about 48MHz.

data_from_memory_raw

8] data_from_memory_raw

memWrited2
partitionW 1
partitionW

addressW
addressW
addressW
addressW
addressW
addressW
addressW
addressW
addressW

addressW

menToRegW

addressW2
partitioni
doutb_bmem

dinah2
douta_dmem

addressW

i2c_rdata_valid, i2c_ctrl_ready
i2c_rdata

cycleCounter

ctionCounter

vart_data_out_valid, vart_data_in_ready

vart_data_out

empty.

button_c, button_n, button_e, button_s, button_w, rotary_push, rotary_event, rotary_left
gpio_dip[7:8

ac97_fifo_

memriteW2
partitis
partitios

addressW

memToRegw

onk
ne

addressW 3

addressW

addresswW2 addressW
partitionw 1
data_from_memory_raw

beginif |address!
OM_MEMOrY_raw e
data_from_memory_raw

data_from_memory_raw

addr
addre:

essW(11
ssh [7:8
addressW

data_from_memory_raw

data_from_memory_raw

dinaw2
data_from_memory_raw - douta_dmem

doutb_bmem

alid, i2¢c_ctrl_ready
iZ2c_rdata

vart_data_out_valid, vart_data_in_ready

addressW
addressW
addressW
addressW
addressW
addressW

data_from_memory_raw
data_from_memory_raw
data, |_memory_raw
data_from_memory_raw
data_from_memory_raw
data_from_memory_raw
data_from_memory_raw

uart_data_out
cycleCounter
instructionCounter
1'b empty
button_c, button_n, button_e, button_s, button_w, rotary_push
gpio_dip(7:@
ac97_fifo_full

rotary_event, rotary_left

data_from_memory_raw

data_from_memory_raw

data_from_memory_raw

The tree could be branched out further, but at this point the critical path is elsewhere. Note that
because the 12C control signals were part of the old critical path, they are evaluated sooner in the
new logic. Part of the bug that arose was because there were no else data_from memory raw =
32°d0 in the inner if-statements. The wire was left unassigned, causing undefined signals.

We tried to further optimize the CPU, and we thought we were able to push to 60MHz. (The
Placement-and-Routing report stated we reached 60MHz with no timing violation.) But then the
optimizations turned out to introduce another bug. We fixed the bug and the clock dropped back

down to 52MHz.

We could not figure out a way to further reduce the critical path, without introducing new bugs.
So we optimized for area and resource usage instead. Reducing resource usage mostly involved
making small changes and simplifying combinational logic. Mostly notably, the traditional R-type
shifting instruction’s shamt signal was combined into the other instruction’s Signed Immediate logic.

The current design runs at 52.054MHz. Without more pipelining stages, this is to be the fastest
clock speed we could reach. All checkpoints run at that clock speed, because the critical path goes
from the Write stage of the datapath back to the Execute stage and through the ALU. Because
the critical path of the entire project is part of the CPU, we are limited to its clock speed. The
peripherals implemented in Checkpoint 2 and 3 are not part of that path.

For mmult, the cycle count is 0427936a and the instruction count is 03bb32eb for a CPI of 1.1135.

Device Utilization Summary on the next page.

Device Utilization Summary

Slice Logic Utilization Used Available Utilization
Number of Slice Registers 2,255 69,120 3%
Number used as Flip Flops 2,255
Number of Slice LUTs 3,869 69,120 5%
Number used as logic 3,810 69,120 5%
Number using O6 output only 3,442
Number using O5 output only 229
Number using O5 and O6 139
Number used as Memory 37 17,920 1%
Number used as Dual Port RAM 24
Number using O6 output only 8
Number using O5 and O6 16
Number used as Shift Register 13
Number using O6 output only 13
Number used as exclusive route-thru 22
Number of route-thrus 251
Number using O6 output only 250
Number using O5 and O6 1
Number of occupied Slices 1,684 17,280 9%
Number of LUT Flip Flop pairs used 4,962
Number with an unused Flip Flop 2,707 4,962 54%
Number with an unused LUT 1,093 4,962 22%
Number of fully used LUT-FF pairs 1,162 4,962 23%
Number of unique control sets 116
Number of slice register sites lost
to control set restrictions 164 69,120 1%
Number of bonded IOBs 59 640 9%
Number of LOCed IOBs 59 59 100%
IOB Flip Flops 17
Number of BlockRAM/FIFO 60 148 40%
Number using BlockRAM only 60
Number of 36k BlockRAM used 60
Total Memory used (KB) 2,160 5,328 40%
Number of BUFG/BUFGCTRLSs 3 32 9%
Number used as BUFGs 3
Number of PLL_ADVs 2 6 33%
Average Fanout of Non-Clock Nets 4.68

5 Conclusions

This project has been a great learning experience.

Looking back, there are were some things that could have been done differently. When imple-
menting Checkpoint 1, we implemented the basic functionality of the CPU with the Control Unit,
Register File, ALU, BMEM, IMEM, and DMEM. We wrote basic assembly tests to test all in-
structions independently and dependently, and attempted to move on to IO modules. Once we
implemented the IO modules, we encountered many strange bugs in trying to run the BIOS and
programs. It turned out that although we believed our assembly tests were comprehensive, they
lacked some edge cases. We got especially stuck on the data-hazards associated with load-then-
store and store-then-load operations.

Additionally, there was a timing error in our DVI Controller’s testbench. We had implemented
the DVI Controller’s timing both combinationally and as a state machine. It turned out neither
was working well because the testbench’s timing resolution was not precise enough. The resolution
caused the testbench waveforms to round the signal lengths, causing the timing model to output
errors. After increasing the testbench’s resolution, the work-in-progress combinational implemen-
tation passed the testbench. We kept that implementation because it was working, and also it uses
less hardware than the state machines.

Aside from those difficult bugs, the rest of the project was fairly straightforward.

We wanted to extend the CPU to be a 5-stage processor. But unfortunately there is not enough time
to do so since the semester is over and the project deadline is approaching. We should have planned
for a 5-stage to begin with. Now that the 3-stage is implemented, transferring it to a 5-stage pro-
cessor is fairly involved. New data-hazards would arise and need to be resolved. But, we would be
able to reuse the (now comprehensive) assembly testbench that we created for the 3-stage processor.

Certainly if there were more time in the semester, we would have extended the project and imple-
mented extra functionality.

